Home EEE Contact

### Fields and waves in communication electronics

Power Engineering   |   Telecommunication   |   Control system Engineering   |   Electronics  |   Differential equation

## Maxwell's equations

Maxwell's equations are the vital theoretical basis for communication electronics. Maxwell unified electricity and magnetism in an unified framework. Four coupled equations describe all the phenomena involving electromagnetism. These are simple yet elegant. In communication engineering electromagnetic fields carry informations from one place to another. Radio , tv and even our cell phones work on this principle.

The greatest prediction of Maxwell was that light was a form of elctromagnetic wave. Both static and dynamic electricity can be explained with Maxwell's equation. All that is invoved are electrons in motion. And the motion of electron called classical electrodynamics is explained using Maxwell equation. It is only the interpretation of maxwell equation , which enable us to say that an accelerated charge like electron emits electromagnetic wave. The full account of the explanation of Maxwell equation is given in this page.
But what is electron? We know it is a tiny particle which has property like charge. This was classical view of electron. If we try to explain the behaviour of electron inside the atom completely we need to resort to quantum mechanics. Due to Heisenberg's uncertainly relation we can not precisely predict the position of electron. So Bohr's orbit does not exist in usual sense. There is no physical orbit of electron which we can find. We can at best predict where will electron be at certain position and at certain time. There are only electron clouds around the nucleus which describe the structure of atom in tiny scale.

## Unreasonably Effective

The Infinity Principle
Notice the act of creative fantasy here. Soup and steel are not really continuous. At the scale of everyday life, they appear to be, but at the scale of atoms or superstrings, they’re not. Calculus ignores the inconvenience posed by atoms and other uncuttable entities, not because they don’t exist but because it’s useful to pretend that they don’t. As we’ll see, calculus has a penchant for useful fictions. More generally, the kinds of entities modeled as continua by calculus include almost anything one can think of. Calculus has been used to describe how a ball rolls continuously down a ramp, how a sunbeam travels continuously through water, how the continuous flow of air around a wing keeps a hummingbird or an airplane aloft, and how the concentration of HIV virus particles in a patient’s bloodstream plummets continuously in the days after he or she starts combination-drug therapy. In every case the strategy remains the same: split a complicated but continuous problem into infinitely many simpler pieces, then solve them separately and put them back together. Now we’re finally ready to state the big idea.